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Abstract

We derived the analytical solution of the eigenvalue problem for stereo-regular vinyl chains, such as stereo-regular polypropylene chains.

The solution is applicable to all stereo-regular polymers of the type (AB)x which do not have symmetry between gaucheC and gaucheK

states, and to polymers, such as polyoxymethylene or polydimethylsiloxane, for which symmetry between the gaucheC and gaucheK states

does exist. For symmetric chains, the general solution of the eigenvalue problem is reduced to the known solution for polyoxymethylene

chains. To illustrate the method the calculations have been performed for the three rotational states (trans, gaucheC and gaucheK) model, but

the general algebraic solution is applicable for any n rotational states models of polymer chains. We used the analytical solution of the

eigenvalue problem to calculate numerically elastic properties of stereo-regular polypropylene chains within the framework of Mark–Curro

theory (J Chem Phys, 79, 5705, 1983).

q 2005 Published by Elsevier Ltd.
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1. Introduction

The rotational isomeric state (RIS) model is one of the

most important achievements in polymer science. It is based

on rigorous statistical mechanics approach and it allows the

calculations of various conformation-dependent macromol-

ecular properties. Foundations of the rotational isomeric

state model have been built by Flory in his classic

monograph Statistical Mechanics of Macromolecules [1].

Important contributions to the early development of

statistical mechanics of polymers were also done by

Volkenstein [2]. The work on the rotational isomeric state

model initiated by Flory [1] has been successfully continued

by Mattice and Suter and presented in the seminal book

Conformational Theory of Large Molecules [3] that shows

the state of the art of the RIS theory. The major result of the

RIS theory is the reduction of the continuous conformation-

al space to a discrete space, based on the bond rotational

potentials for polymer chains. Using this reduction, partition
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function calculations are treated as an algebraic problem,

which is mathematically more tractable.

Another significant simplification (for sufficiently long

chains) can be performed by applying matrix eigenvalue

techniques for the derivation of chain statistics. The largest

eigenvalue method is a very powerful tool, which provides

the analytical solution of the RIS model in the limit of

infinite chain length. The method has been previously

applied to the solution of the RIS for simple symmetric

polymer chains of type (A)n, such as polymethylene chains

[1,4], and to symmetric polymer chains of type (AB)x
having symmetry between gaucheC and gaucheK states,

such as polyoxymethylene (POM) [1] or polydimethylsi-

loxane (PDMS) [5]. We note that x is equal to n/2, where n is

the number of bonds.

In the present paper we extend the largest eigenvalue

method to asymmetric polymer chains of type (AB)x. A

well-known polymer of this type is polypropylene (PP).

Here, we restrict our analysis to stereo-regular chains with

periodically repeating dyad conformations, such as isotatic

d, isotatic l or syndiotactic chains. Our analysis does not

hold for atactic vinyl polymers.

The structure of the paper is as follows. We first present

the foundations of the RIS for asymmetric (AB)x chains. In

Section 2 we show in detail the solution of the eigenvalue
Polymer 46 (2005) 4373–4383
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problem for stereo-regular (AB)x chains. As a special case,

we also include the known solution of the largest eigenvalue

method for symmetric (AB)x chains, such as polyoxymethy-

lene (POM). In the final part of the paper we apply the

analytical solution of the eigenvalue problem to calculate

the elastic properties of stereo-regular polypropylene chains

within the framework of the Mark–Curro theory [6,7]. We

also discuss possible future developments of the theory.
2. Statistical weight matrices for asymmetric polymer

chains

In the rotational isomeric state (RIS) model of polymer

chains, bond lengths and bond angles are kept fixed, and

there is a limited set of allowed torsional angles. For

example, in the simplest case of polymethylene chains the

RIS model assumes that there are three torsional states:

trans (t), gaucheC (gC) and gaucheK (gK). The chain

conformation of a polymer is thus characterized by the set of

torsional states of polymer bonds. This approach greatly

simplifies the statistical mechanics of chain molecules by

reducing it to a purely algebraic problem.

If Ezh,i denotes the energy associated with the bond i

being state h, and the bond iK1 in being in state z, then the

statistical weight uzh,i is defined as [1]:

uzh;i Z exp
KEzh;i

RT

� �
(1)

The statistical weights then can be written as a statistical

weight matrix UiZ[uzh]i.

For the case of polymethylene chains the statistical

weight matrix can be written in the following form [1]

UZ

1 s s

1 sj su

1 su sj

2
64

3
75 (2)

where sZexp(KEg/RT), Eg is the difference between

energies of gauche and trans states, and j and u are related

to energies of gC and gK pairs.

The RIS model is easily applicable to polymer chains of

the type (AB)x. For symmetric chains, instead of the single

matrix U, there are two types of statistical weight matrices:

Ua and Ub with the subscript a referring to the A/B bond,

and subscript b corresponding to the B/A bond [1].

Ua Z

1 s s

1 sja sua

1 sua sja

2
64

3
75; Ub Z

1 s s

1 sjb sub

1 sub sjb

2
64

3
75 (3)

Symmetric polymer chains, such as polydimethylsilox-

ane (PDMS) or polyoxymethylene (POM) have symmetry

between the gaucheC and gaucheK states.

The presence of an asymmetric center in a chain

molecule distinguishes between the handedness of the
rotations around skeletal bonds. Because of this handedness,

frequencies of states corresponding to the left and right

rotations differ.

For asymmetric vinyl chains (–CHR–CH2–)x such as

polypropylene (with R being CH3) there are two different

statistical weight matrices corresponding to different

stereochemical configurations. If R groups is located in

the front of the plane formed by the skeletal bonds of the

fully extended chain we name the corresponding carbon

atoms d centers, while C atoms connected to R groups

located behind this plane are named l centers [1]. Since any

1808 rotation about the vertical axis of this plane changes d

centers to l centers (and l centers to d centers) the

stereochemical configuration of a given center is defined

relative to its neighboring centers. Therefore, the pair ll is

equivalent to dd due to symmetry, but differs from the pair

ld (or dl), since such a symmetry operation cannot be

applied. Such stereochemical neighbor pairs are called

dyads.

For dd dyad the two statistical weight matrices are [1,8]

U 0
d corresponding to the CHR/CH2 bond, and U 00

dd,

corresponding to the CH2/CHR bond [1,8]:

U0
d Z

ht� 1 t

h 1 tu

h u t

2
64

3
75; U00

dd Z

hu tu 1

h tu u

hu 0 u

2
64

3
75 (4)

The statistical weight matrices for ll dyad are [1,8]

U0
l Z

ht� t 1

h t u

h tu 1

2
64

3
75; U00

ll Z

hu 1 tu

hu u 0

h u tu

2
64

3
75 (5)

i.e. matrices U 0
l and U 00

ll are equivalent to (U 0
d)
T and

(U 00
dd)

T, respectively, [1,8].

For the syndiotactic chains the following matrices are

employed [1,8]

U00
dl Z

h u tu

hu 1 tu

hu u 0

2
64

3
75; U00

ld Z

h tu u

hu 0 u

hu tu 1

2
64

3
75 (6)

The statistical weight factors h, 1 and t in the first row (or

the diagonal) of U 0
d can be interpreted as resulting from the

first order interactions associated with t, gC and gK states

about bond i. The second order interactions are associated

with statistical weight factors u and t*. A more detailed

discussion of these statistical weight matrices and their

relation to the bond rotational potentials is given in Ref. [1].

For the isotatic polypropylene these matrices repeat

regularly in the form (U 0
d U

00
dd)x where x is the number of

dyads, so one may combine them into a single matrix [1,8]

Uð2Þ
isotactic ZU0

dU
00
dd (7)

The above equation applies to dd dyads, but for ll dyads

corresponding equations have a similar form.
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For simplicity we will use a shorter notation Ua and Ub

and U(2) which describes both dd and ll dyads with Ref. [1,8]

Uð2Þ ZUaUb (8)

In the case of syndiotactic chains, however, matrix U(2)

equals: U 0
d U

0
dlQ, where

QZ

1 0 0

0 0 1

0 1 0

2
64

3
75

is the matrix that interchanges rows and columns corre-

sponding to the states gC and gK [1,8]. The isotactic d chain

is composed of the sequence of preferred conformations

(gCt)(gCt). or (tgK)(tgK)., the isotactic l is composed of

preferred sequences (gKt)(gKt). or (tgC)(tgC)., while

the syndiotactic chain is composed of preferred sequences

(gCgC)(tt)(gCgC)(tt). or (tt)(gKgK)(tt)(gKgK)(tt)., or

all-trans (tt)(tt). sequence [1,8].

The partition function of the chain within the rotational

isomeric state model framework is [1,8]:

Z Z J*½Uð2Þ�xK1J (9)

where J* and J are vectors defined as

J* Z 1 0 0
� �

(10)

and

JZ

1

1

1

2
64

3
75 (11)

and x is the number of dyads in the chain.
3. The largest eigenvalue method

Before proceeding further with the analysis of poly-

propylene, let us first consider the largest eigenvalue

method for the simplest, well-known case of polymethy-

lene. This problem was first studied by Volkenstein [2],

Birshtein and Ptitsyn [9] and the detailed analysis of the

method was later presented by Flory [1]. Appendix A shows

a variation of the detailed Volkenstein [2], Birshtein and

Ptitsyn [9], Flory [1] solution of this problem, which might

be useful to better understand the derivation of the similar

solution for stereo regular vinyl chains.

The statistical weight matrix U for polymethylene can be

diagonalized BUAZL where B is the matrix inverse of A,

(BZAK1). The probability of having bond iK1 in the x

state and bond i in the h state for polymethylene is [1]

Pi;xh Z
1

Z
J�½UðiK2ÞU0

i;xhU
ðnK1KiÞ�J

� �
(12)

where U 0
i,xh is the matrix obtained from U by striking out all

elements except the element uxh. It can be shown [1,9] that
the largest eigenvalue method (for long chains) leads to a

simple expression for Pxh: [1,9]

Pxh ZB1xuxhAh1l
K1
1 (13)

where l1 is the largest eigenvalue of U, while Ah1 and Blx are

elements of matrices A and BZAK1 that diagonalize the

statistical weight matrix U, and expressible through

eigenvectors of U [1,9].

For polymethylene there is a single probability Pi,xh of

having bond iK1 in the x state and bond i in the h state. In

the case of a vinyl chain there are two types of probabilities

Pai;xh
and Pbi;xh

with the subscript a referring to the CHR/
CH2 bond, and subscript b corresponding to the CH2/CHR

bond [1]. These two kinds of probabilities Pai;xh
and Pbi;xh

exist in general for any polymer of the type (AB)x, in

particular for the polyoxymethylene (POM), studied in

detail the by the largest eigenvalue method by Flory [1] or

for polydimethylsiloxane (PDMS) [5]. The symmetry

between the gaucheC and gaucheK states for polyoxy-

methylene chains was used in these analyses. This

symmetry is manifested in matrices Ua and Ub for POM

chains (see Eq. (3)).

The use of this symmetry simplifies the solution of the

eigenvalue problem. The partition function is [1]

Z Z J*½Uð2Þ�xK1J (14)

where

Uð2Þ ZUaUb (15)

By abolishing the distinction between the gC and gK

states the matrix U(2) can be reduced to the 2!2 form: [1]

Uð2Þ Z
1C2s 2ðsCs2bÞ

1Csa 2sCs2ab

" #
(16)

with

aZ ja Cua (17)

bZ jb Cub (18)

The eigenvalues of the matrix U(2) are then given by

relatively simple formula [1]

l
ð2Þ
1;2 Z

1

2
ð1C4sC s2abÞG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1Ks2abÞ2 C8sð1CsaÞð1CsbÞ

ph i
(19)

The first order a priori probabilities of gauche and trans

states and the second order a priori probabilities for pairs of

rotational states are then given in terms of algebraic

equation containing the eigenvalues l1,2
(2) and its various

derivatives. These equations can be found in Flory’s book

[1] or (in reference to the PDMS chains) in the paper by

Kloczkowski, Sharaf and Mark [5], where the analytical

solution of the eigenvalue problem was used in the Monte-

Carlo generation of long PDMS chains. The probabilities

Pai;xh
and Pbi;xh

are, however, not given in an explicit form
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but as a set of equations based on the symmetry between two

gauche states.

In general, however, such a simplifying symmetry may

not exist as in the case of the asymmetric vinyl chains. For

polymers such as polypropylene, the corresponding

matrices given by Eqs. (4)–(6) are clearly non-symmetric

with respect to the elements gC and gK. This non-

symmetricalness requires the general solution of the

eigenvalue problem without the symmetry simplification

used for POM chains. Below we provide the exact analytical

solution of this problem for stereo-regular polymer chains.

The probabilities Pai;xh
and Pbi;xh

are given by the

following formula:

Pai;xh
Z

1

Z
fJ�½Uð2Þ�ðiK1ÞU0

ai;xh
Ubi

½Uð2Þ�ðxK1KiÞgJ
� 	

(20)

and

Pbi;xh
Z

1

Z
fJ�½Uð2Þ�ðiK1ÞUai

U0
bi;xh

½Uð2Þ�ðxK1KiÞgJ
� 	

(21)

where U0
ai;xh

and U0
bi;xh

denote the matrices Ua and Ub,

respectively, with all elements stricken out except the

elements ua,xh (or ub,xh), and U(2)ZUaUb. The subscript i,

which labels the position of the given dyad in the chain

sequence, can be dropped off in the limit of the infinitely

long chains when the largest eigenvalue method is

applicable. If the matrix U(2) is diagonalized

BUð2ÞAZL (22)

where BZAK1 then the we can write the probabilities Pai;xh

and Pbi;xh
as

Pa;xh Z
1

Z
fJ�ALðiK1ÞBU0

a;xhUbAL
ðxK1KiÞBgJ

� �
(23)

and

Pb;xh Z
1

Z
fJ�ALðiK1ÞBUaU

0
b;xhAL

ðxK1KiÞBgJ
� �

(24)

It can be shown (see Appendix B for details) that by

applying the largest eigenvalue method the probability Pai;xh

can be written as

Pa;xh Z
1

l1

B1xua;xh½A11ub;h1 CA21ub;h2 CA31ub;h3�
� �

(25)

The equation for Pb,xh (see Appendix B for details)

becomes

Pb;xh Z
1

l1

ub;xhAh1½B11ua;1x CB12ua;2x CB13ua;3x�
� �

(26)

The above equation looks similar to Eq. (25) for Pa,xh.

The difference between Eqs. (25) and (26) is due only to the

replacement of elements of matrices A and Ua by the

transposed elements of matrices B and Ub, respectively. It

can be proved that for symmetric polymer chains of the type

(AB)n the solution given by Eqs. (25) and (26) is equivalent

to the known solution of the largest eigenvalue problem for
polyoxymethylene (POM) [1] or PDMS [5] given as a set of

equations using the symmetry between two gauche states.

Instead of a tedious analytical proof, it is straightforward to

reproduce all numerical results obtained in reference [5] for

PDMS using the probabilities given by Eqs. (25) and (26).

From the two-bond probabilities Pa,xh and Pb,xh we can

calculate single-bond probabilities

Pa;h Z
X3

xZ1

Pa;xh (27)

and

Pb;h Z
X3

xZ1

Pb;xh (28)

and conditional probabilities

qa;xh Z
Pa;xh

Pa;x

(29)

and

qb;xh Z
Pb;xh

Pb;x

(30)

The conditional probabilities can be used for a very

efficient Monte-Carlo generation of long polymer chains

[4,5]. We have applied this method to calculate elastic

properties of stereo regular polypropylene chains within the

framework of the theory of Mark and Curro [6,7]. We

should note that our model neglects all long range

interactions, and, therefore, chains are almost phantom-like.
4. Calculation of elastic properties of polypropylene

chains

To illustrate the application of the above analytical

results we have performed the calculations of elastic

properties of polypropylene chains. We have applied the

method of Mark and Curro [6,7], based on the Monte-Carlo

rotational isomeric state model, to calculate the polymer

elastic properties from the distribution of the end-to-end

vector of polymer chains. It has been shown [4,5] that this

method is also applicable to filled polymers. In the Mark–

Curro theory the distribution P(r) of the end-to-end vector r

obtained from Monte-Carlo simulations is directly related to

the Helmholtz free energy A(r) of a chain

AðrÞZ cKkT ln PðrÞ (31)

where c is a constant. The application of the three-chain

model leads to the following expression for the elastic free

energy change during the deformation of the network as a

function of elongation ratio a

DAZ
n

3
ð½Aðr0aÞCAðr0a

K1=2ÞK3Aðr0Þ�Þ (32)



Fig. 1. The distribution function of the end-to-end vector for isotactic PP

chains of length 100, 150, and 200 bonds.
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Here n is the number chains in the network and r0 is the

root-mean-square end-to-end vector of network chains. The

simplifying assumption of affine deformation of the network

chains was used in the derivation of Eq. (32).

The nominal stress f* defined as the elastic force at

equilibrium per unit cross-sectional area of the sample in the

undeformed state is

f * ZKT
vDA

va

� �
T

(33)

and, therefore

f * ZK
nkTr0

3
½G0ðr0aÞKaK3=2G0ðr0a

K1=2Þ� (34)

where G(r)Zln P(r), and G 0(r) denotes the derivative

dG/dr. In the past we have successfully used this

methodology to calculate the elastic properties of both

unfilled and filled polymethylene and polydimethylsiloxane

materials [4,5]. Here we apply the same methodology to

stereo-regular chains of polypropylene. We are especially

interested in comparison of elastic properties of isotactic

and syndiotactic chains.

There are several different rotational isomeric state

models of polypropylene (PP) which differ in the number of

rotational states assumed for PP chains [10–15]. The first PP

model was proposed by Flory and co-workers was based on

three rotational states [13]. There are also more accurate

models of polypropylene involving five rotational states

developed by Suter and Flory [8], or even nine states (Boyd

and Breitling) [11]. The three-state model with proper

parametrization [12] has been, however, successfully used

for calculations of various properties of the polypropylene

chains. In the present work we use the simplest three-state

RIS model of PP chain proposed by Tonelli, Abe and Flory

in 1970 [13]. In their model, the authors assumed the

following values of the RIS parameters (in Eqs. (4)–(6)):

hZ 1:0 (35)

tZ 0:5

uZ 0–0:05

t* Z 1:0

The above values of rotational parameters for PP

correspond to the temperature 481 K.

Bond length of C–C bonds was assumed to be 1.53 Å and

the valence angles:

C–CH2–C 1128 (36)

CH2–C–CH2 1128

C–C*–H 106:88
H–C–H 1098

and torsion angles for different rotational states

t 1808 KDf (37)

gC 608 KDf

gK K608

with DfZ0, 10 or 208.

We have used the same values of RIS parameters for PP

with DfZ0 and uZ0.05.

We have generated 500,000 chains for each of the two

cases (isotactic PP, syndiotactic PP) for varying lengths of

the chains. We have studied PP chains of 100, 150 and 200

bonds long. The simulations of PP chains were based on

bond probabilities and conditional probabilities obtained

with the largest eigenvalue method from Eqs. (25)–(30).

Fig. 1 shows the end-to-end vector distribution functions

for isotactic polypropylene. We note that the results for

isotactic-D and isotactic-L polypropylene are indistinguish-

able from each other due to the chain symmetry. We have

performed statistical analysis of errors in Monte-Carlo

results by running simulations five times (2,500,000

generated chains) and calculating averages and variances

(s2) for all points in Fig. 1. The calculated error bars were

too small to show them in Fig. 1. For example, the largest

value of s (corresponding to the maximum of the curve for

nZ150) in Fig. 1 was 0.00065.

The similar plots for syndiotactic polypropylene are

shown in Fig. 2. The end-to-end distance in Figs. 1 and 2 is

normalized by nl, where n is the number of skeletal bonds

and l is bond length.

The characteristic feature of both graphs is that with the

increasing number of bonds the maximum of distribution

curves moves towards smaller values of r/nl. Additionally,

syndiotactic chains have a maximum in the end-to-end

distribution function at larger values of r/nl than isotactic



Fig. 2. The distribution function of the end-to-end vector for syndiotactic

PP chains of length 100, 150, and 200 bonds.

Fig. 4. Nominal stress f* for isotactic PP chains as a function of the

extension ratio a for chains of length 100, 150, and 200 bonds.
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chains. This is clearly visible in Fig. 3 that compares

distribution functions of isotactic and syndiotactic chains of

100 bonds.

This behavior of syndiotactic chains is easily explain-

able. The distribution function of syndiotactic PP is shifted

towards larger values of r/nl than that of isotactic PP

because the most extended all-trans conformations are

preferred for syndiotactic polymers.

Figs. 4 and 5 show the nominal stress f* calculated from

Eq. (34) for isotactic and syndiotactic PP chains, respect-

ively, as a function of the extension ratio a for varying

length of chains. It is interesting that the nominal stress of

syndiotactic PP chains shows significantly larger depen-

dence on the length of the chain than that of isotactic PP.

Fig. 6 compares the variation of nominal stress f* with

extension ratio a of isotactic and syndiotactic chains

composed of 100 bonds.

The significantly larger upward plot of the nominal stress

for syndiotactic PP chains can be explained by the fact that

syndiotactic conformations are already highly extended,
Fig. 3. The end-to-end vector distribution function of isotactic and

syndiotactic PP chains of 100 bonds.
and, therefore, the further elongation of such chains requires

larger force than for isotactic chains.

Figs. 7 and 8 show Mooney–Rivlin plots of the reduced

stress (modulus) [f*]

½f *�Z
f *

aKaK2
(38)

for isotactic and syndiotactic PP chains, respectively, as a

function of reciprocal the extension ratio a for chains of

length 100, 150, and 200 bonds.

Fig. 9 compares plots of the reduced stress [f*] as a

function of aK1 for isotactic and syndiotactic PP chains of

length 100 bonds. These results suggest that the Mooney–

Rivlin semi-empirical formula

½f *�Z 2C1 C2C2a
K1 (39)

where C1 and C2 are empirical constants independent of

elongation a, is more applicable to isotactic PP chains in
Fig. 5. Nominal stress f* for syndiotactic PP chains as a function of the

extension ratio a for chains of length 100, 150, and 200 bonds.



Fig. 6. Nominal stress f* for isotactic and syndiotactic PP chains of length

100 bonds as a function of the extension ratio a.

Fig. 8. The reduced stress [f*] as a function of aK1 for syndiotactic PP

chains of length 100, 150, and 200 bonds.
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Fig. 9 (for which the plot is almost linear) than to

syndiotactic PP chains.
5. Discussion

The present study shows that the analytical solution

of the largest eigenvalue problem for stereo regular

chains is immediately applicable for theoretical studies

of various properties of vinyl chains. We will continue

to study this problem in the future. Our future work will

concentrate on comparative analysis of elastic properties

of different stereo-regular networks in filled rubbers and

nanocomposites. The future research will be also

focused on possible extension of the present approach

to atactic vinyl chains and to RIS models with larger

number of rotational states.
Fig. 7. The reduced stress [f*] as a function of aK1 for isotactic PP chains of

length 100, 150, and 200 bonds.
Appendix A
The largest eigenvalue method for polymethylene

The equation for the partition function for a simple chain

composed of identical units, such as polymethylene is

Z Z J*½U�nK2J (A1)

where n is the number of monomer units. The matrix U in

Eq. (9) can be diagonalized

BUA ¼ L (A2)

where B is the matrix inverse of A

BZAK1 (A3)

and L is the matrix containing eigenvalues on the diagonal.

In the case of three rotational states (in general we may have

n rotational states),
Fig. 9. The reduced stress [f*] as a function of aK1 for isotactic and

syndiotactic PP chains of length 100 bonds.
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LZ

l1 0 0

0 l2 0

0 0 l3

2
64

3
75 (A4)

In order to understand the more complicated case of

polypropylene it is worth looking into the detailed algebraic

calculation of the partition function for polymethylene. The

partition function in this case becomes:

Z Z J*ALnK2BJ (A5)

The term J*ALnK2 can be written

J*ALnK2 Z 1 0 0
� � A11 A12 A13

A21 A22 A23

A31 A32 A33

2
64

3
75

lnK2
1 0 0

0 lnK2
2 0

0 0 lnK2
3

2
664

3
775

Z A11 A12 A13

� � lnK2
1 0 0

0 lnK2
2 0

0 0 lnK2
3

2
664

3
775

Z A11l
nK2
1 A12l

nK2
2 A13l

nK2
3

� �
(A6)

The term BJ on the other hand is

BJ Z

B11 B12 B13

B21 B22 B23

B31 B32 B33

2
64

3
75

1

1

1

2
64

3
75Z

X3

hZ1

B1h

X3

hZ1

B2h

X3

hZ1

B3h

2
6666666664

3
7777777775

(A7)

The product of the two vectors given in Eqs. (A6) and

(A7) (which can be easily generalized to n rotational states)

leads to the following expression for the partition function

of the polymethylene chain [1]

Z Z
Xn

xZ1

A1x

Xn

hZ1

Bxhlx (A8)

For long chains in the limit n/N the largest eigenvalue l1

gives the major contribution to the above summation and the

partition function can be approximated by

Z ZA11

Xn

hZ1

B1hl1 (A9)

The probability of having bond iK1 in the x state and bond i

in the h state for polymethylene is [1]

Pi;xh Z
1

Z
J�½UðiK2ÞU0

i;xhU
ðnK1KiÞ�J

� �
(A10)

where U 0
i,xh is the matrix obtained from U by striking out all

elements except the element uxh. The dummy subscript i in

U 0
i,xh indicating the position of the bond in the chain will be
neglected in the further analysis. Eq. (A10) can be rewritten

in terms of matrices A, B and L as

Pi;xh Z
1

Z
J�½ALðiK2ÞBU0

xhAL
ðnK1KiÞB�J

� �
(A11)

In the above product the term on the left J*ALiK2 is similar

to that calculated in Eq. (A6), while the last product on the

right BJ was calculated earlier in Eq. (A7). The only

difference between Eqs. (A11) and (A5) is (besides the

factor 1/Z) the product of matrices BU 0
xhAL

(nK1Ki) in the

middle.

The product BU 0
xh is given by the matrix composed of

the vector

B1xuxh

B2xuxh

B3xuxh

2
64

3
75

in the h-th column and vectors

0

0

0

2
64

3
75

in all other columns. This can be checked directly, for

example

B11 B12 B13

B21 B22 B23

B31 B32 B33

2
64

3
75

0 u12 0

0 0 0

0 0 0

2
64

3
75

Z

0 B11u12 0

0 B21u12 0

0 B31u12 0

2
64

3
75 (A12)

The product ALN, where the abbreviation

N Z nK1K i (A13)

is introduced to simplify the notation becomes:

ALN Z

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
64

3
75

lN1 0 0

0 lN2 0

0 0 lN3

2
664

3
775

Z

A11l
N
1 A12l

N
2 A13l

N
3

A21l
N
1 A22l

N
2 A23l

N
3

A31l
N
1 A32l

N
2 A33l

N
3

2
664

3
775 (A14)

If the largest eigenvalue is l1, then eigenvalues l2 and l3 can

be set to zero in the limit n/N to simplify calculations.
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With this simplification

ALN Z

A11l
N
1 0 0

A21l
N
1 0 0

A31l
N
1 0 0

2
664

3
775 (A15)

and the product BU 0
xhAL

N becomes:

BU0
xhAL

N Z

B1xuxhAh1l
N
1 0 0

B2xuxhAh1l
N
1 0 0

B3xuxhAh1l
N
1 0 0

2
664

3
775 (A16)

Additionally if eigenvalues l2 and l3 are set to zero we

have

J*ALðiK2Þ Z A11l
iK2
1 0 0

� �
(A17)

and the expression the probability Pxh becomes

Pxh Z
1

Z
J�½ALðiK2ÞBU0

xhAL
nK1KiB�J

� �

Z
1

Z
A11l

i�2
1 0 0

� � B1xuxhAh1l
nK1Ki
1 0 0

B2xuxhAh1l
nK1Ki
1 0 0

B3xuxhAh1l
nK1Ki
1 0 0

2
664

3
775

X3

hZ1

B1h

X3

hZ1

B2h

X3

hZ1

B3h

2
6666666664

3
7777777775

0
BBBBBBBBB@

1
CCCCCCCCCA

Z
1

Z
A11B1xuxhAh1l

nK3
1

X3

hZ1

B1h

" #

(A18)

Substituting Z by expression given in Eq. (A5) leads

finally to [1,9]:

Pxh ZB1xuxhAh1l
K1
1 (A19)
Appendix B
The solution of the eigenvalue problem for stereo-regular

vinyl chains

The diagonalization of the matrix U(2) leads to

BUð2ÞAZL (B1)

where BZAK1 and L is the matrix containing eigenvalues

on the diagonal and zeros off-diagonal. The probabilities

Pai;xh
and Pbi;xh

are defined as

Pa;xh Z
1

Z
J�ALðiK1ÞBU0

a;xhUbAL
ðxK1KiÞBgJ

� �
(B2)
and

Pb;xh Z
1

Z
fJ�ALðiK1ÞBUaU

0
b;xhAL

ðxK1KiÞBgJ
� �

(B3)

The part of the product J*AL(iK1) is similar to that

derived for the polymethylene chain (in Appendix A), if we

neglect and set to zero eigenvalues l2 and l3 which are

smaller than l1.

J*ALðiK1Þ Z A11l
ðiK1Þ
1 0 0

� �
(B4)

Similarly as in Appendix A the product BJ is given by

Eq. (A7). We additionally have to compute the product

BU 0
a,xhUb,xhAL

(xK1Ki) (and BU 0
a,xhU

0
b,xhAL

(xK1Ki)).

Neglecting eigenvalues l2 and l3, smaller than l1 we have

ALðxK1KiÞ Z

A11l
ðxK1KiÞ
1 0 0

A21l
ðxK1KiÞ
1 0 0

A31l
ðxK1KiÞ
1 0 0

2
664

3
775 (B5)

The product BU 0
a,xh, where BU 0

a,xh is the matrix with all

elements of Ua set to zero, except the ua,xh element is similar

to that derived for the polymethylene chain (Appendix A)

and it is a matrix composed of the vector

B1xua;xh

B2xua;xh

B3xua;xh

2
64

3
75

in the h-th column and vectors

0

0

0

2
64

3
75

in two other columns. The only difference between the case

of the polymethylene and stereo-regular polypropylene is an

additional factor Ub on the right in the product of matrices.

We also have to calculate the product BU 0
a,xhUb,xh. It can

be shown that

BU0
a;xhUb;xh

Z

B1xua;xhub;h1 B1xua;xhub;h2 B1xua;xhub;h3

B2xua;xhub;h1 B2xua;xhub;h2 B2xua;xhub;h3

B3xua;xhub;h1 B3xua;xhub;h2 B3xua;xhub;h3

2
64

3
75 (B6)
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We can use this result to calculate

J�ALðiK1ÞBU0
a;xhUb;xh Z A11l

ðiK1Þ
1 0 0

� � B1xua;xhub;h1 B1xua;xhub;h2 B1xua;xhub;h3

B2xua;xhub;h1 B2xua;xhub;h2 B2xua;xhub;h3

B3xua;xhub;h1 B3xua;xhub;h2 B3xua;xhub;h3

2
64

3
75

Z A11l
ðiK1Þ
1 B1xua;xhub;h1 A11l

ðiK1Þ
1 B1xua;xhub;h2 A11l

ðiK1Þ
1 B1xua;xhub;h3

� �
ZA11l

ðiK1Þ
1 B1xua;xh ub;h1 ub;h2 ub;h3

� �
(B7)

The expression for the probability Pai;xh
is now:

Pa;xh Z
1

Z
A11l

ðiK1Þ
1 B1xua;xh ub;h1 ub;h2 ub;h3

� � A11l
ðxK1KiÞ
1 0 0

A21l
ðxK1KiÞ
1 0 0

A31l
ðxK1KiÞ
1 0 0

2
664

3
775

X3

hZ1

B1h

X3

hZ1

B2h

X3

hZ1

B3h

2
6666666664

3
7777777775

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

Z
1

Z
A11l

ðxK2Þ
1 B1xua;xhðA11ub;h1 CA21ub;h2 CA31ub;h3Þ

X3

hZ1

B1h

( )
(B8)

Because the partition function Z is equal to:

Z ZA11l
ðxK1Þ
1

X3

hZ1

B1h (B9)

the final expression for the probability Pai;xh
is

Pa;xh Z
1

l1

B1xua;xh½A11ub;h1 CA21ub;h2 CA31ub;h3�
� �

(B10)

The equation for Pb,xh can be derived in a similar way. We start from the definition:

Pbi;xh
Z

1

Z
fJ�½Uð2Þ�ðiK1ÞUai

U0
bi;xh

½Uð2Þ�ðxK1KiÞgJ
� 	

(B11)

when written in terms of matrices A and B, it becomes:

Pb;xh Z
1

Z
fJ�ALðiK1ÞBUaU

0
b;xhAL

ðxK1KiÞBgJ
� �

(B12)

Similarly as before (Eq. (B4))

J*ALðiK1Þ Z ½A11l
ðiK1Þ
1 0 0 �

if the eigenvalues l2 and l3, smaller than l1 are neglected. Now we introduce a new matrix C defined as a product

CZBUa (B13)

Instead of the product BU 0
a,xh (which we calculated in the derivation of Pa,xh) we have a similar product CU 0

b,xh. Similarly

as before this matrix product gives a matrix which has in the h-th column the vector

C1xub;xh

C2xub;xh

C3xub;xh

2
64

3
75
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and vectors

0

0

0

2
64

3
75

in two other columns.

By multiplying this matrix CU 0
b,xh by AL(xKiK1) and

neglecting eigenvalues l2 and l3, smaller than l1 we obtain

CU0
b;xhAL

ðxK1KiÞ Z

C1xub;xhAh1l
ðxK1KiÞ
1 0 0

C2xub;xhAh1l
ðxK1KiÞ
1 0 0

C3xub;xhAh1l
ðxK1KiÞ
1 0 0

2
664

3
775 (B14)

The formula for Pb,xh then becomes:

Pa;xh Z
1

Z
A11l

ðiK1Þ
1 0 0

� � C1xub;xhAh1l1 0 0

C2xub;xhAh1l1 0 0

C3xub;xhAh1l1 0 0

2
64

3
75

X3

hZ1

B1h

X3

hZ1

B2h

X3

hZ1

B3h

2
6666666664

3
7777777775

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

Z
1

Z
A11l

ðxK2Þ
1 C1xub;xhAh1

X3

hZ1

B1h

" #( )

(B15)

Since Z is given by Eq. (B9) the final equation for Pb,xh

becomes

Pb;xh Z
1

l1

ðC1xub;xhAh1Þ (B16)

By using the definition of CZBUa, i.e.
C1x ZB11ua;1x CB12ua;2x CB13ua;3x (B17)

we finally obtain

Pb;xh Z
1

l1

ðub;xhAh1½B11ua;1x CB12ua;2x CB13ua;3x�Þ

(B18)
References

[1] Flory PJ. Statistical mechanics of chain molecules. New York: Wiley;

1969 [reprinted by Hanser, Munchen, 1989].

[2] Volkenstein MV. Configurational statistics of polymer chains. New

York: Wiley; 1963.

[3] Mattice WL, Suter UW. Conformational theory of large molecules.

New York: Wiley; 1994.

[4] Kloczkowski A, Sharaf MA, Mark JE. Comput Polym Sci 1993;3:39.

[5] Kloczkowski A, Sharaf MA, Mark JE. Chem Eng Sci 1994;17:2889.

[6] Mark JE, Curro JG. J Chem Phys 1983;79:5705.

[7] Curro JG, Mark JE. J Chem Phys 1984;80:4521.

[8] Flory PJ, Mark JE, Abe A. J Am Chem Soc 1966;88:639.

[9] Birshtein TM, Ptitsyn OB. Conformations of macromolecules. New

York: Wiley; 1964.

[10] Suter UW, Flory PJ. Macromolecules 1975;8:765.

[11] Boyd RH, Breitling SM. Macromolecules 1972;5:729.

[12] Biskup U, Cantow HJ. Macromolecules 1972;5:546.

[13] Tonelli AE, Abe Y, Flory PJ. Macromolecules 1970;3:303.

[14] Rehahn M, Mattice WL, Suter UW. Rotational isomeric state models

in macromolecular systems, advances in polymer science. 131/132.

Berlin: Springer; 1997.

[15] Akten ED, Mattice WL, Suter UW. Rotational isomeric state (RIS)

calculations, with an illustrative application to head-to-head, tail-to-

tail polypropylene. In: Kotelyanskii M, Theodorou DN, editors.

Simulation methods for polymers. New York: Marcel Dekker; 2004.

p. 89–107.


	The largest eigenvalue method for stereo-regular vinyl chains
	Introduction
	Statistical weight matrices for asymmetric polymer chains
	The largest eigenvalue method
	Calculation of elastic properties of polypropylene chains
	Discussion
	Appendix A
	The largest eigenvalue method for polymethylene

	Appendix B
	The solution of the eigenvalue problem for stereo-regular vinyl chains

	References


